测绘学报 ›› 2024, Vol. 53 ›› Issue (11): 2043-2052.doi: 10.11947/j. AGCS.2024.20240222.
• 综述 •
李志林1,2,3(), 徐柱1, 慎利1, 李精忠4, 蓝天1(), 王继成5, 赵婷婷6, 艾廷华7, 遆鹏1, 刘万增6, 陈军3,6
收稿日期:
2024-05-22
发布日期:
2024-12-13
通讯作者:
蓝天
E-mail:dean.ge@home.swjtu.edu.cn;tianlan@swjtu.edu.cn
作者简介:
李志林(1960—),男,博士,教授,研究方向为空间数据多尺度建模与表达、空间信息理论与方法、遥感影像解译与信息提取。 E-mail:dean.ge@home.swjtu.edu.cn
基金资助:
Zhilin LI1,2,3(), Zhu XU1, Li SHEN1, Jingzhong LI4, Tian LAN1(), Jicheng WANG5, Tingting ZHAO6, Tinghua AI7, Peng TI1, Wanzeng LIU6, Jun CHEN3,6
Received:
2024-05-22
Published:
2024-12-13
Contact:
Tian LAN
E-mail:dean.ge@home.swjtu.edu.cn;tianlan@swjtu.edu.cn
About author:
LI Zhilin (1960—), male, PhD, professor, majors in multi-scale modeling and representation of spatial data, theories and methods of spatial information, as well as remote sensing image interpretation and information extraction. E-mail: dean.ge@home.swjtu.edu.cn
Supported by:
摘要:
通过智能化提升制图技术,让制图系统能全自动地完成地图设计与制作,一直是地图学界追求的目标,也一直是国际地图制图协会的前沿研究方向。从20世纪80年代开始,人工智能技术在地图学领域开始应用,逐步解决了部分工序的自动化问题,提高了地图制图的生产效率。然而,地图设计等关键环节的自动化水平仍然极低,无法满足信息时代的“定制化”“泛在化”制图需求。可喜的是,2023年以来,以GPT-4和Gemini等大语言模型(简称“大模型”)为代表的人工智能技术取得了突破,达到了“准通用人工智能”,表现出令人惊叹的语言理解力、推理能力和表达能力。基于此,本文探讨利用大模型来提升地图制图系统的智能水平,旨在建立新一代智能化制图理论与方法体系。首先,分析现有数字制图系统的瓶颈问题,指出建立新一代智能化制图技术的必要性;其次,分析大模型的性质与能力,论证建立新一代智能化制图技术的充分性;然后,进一步分析它们相结合的可能与方式,提出一个大模型时代的智能制图模式,并根据其根本性质与表征,将之称为情境化地图表达;最后,讨论情境化地图表达的关键技术问题,即自主觉知用图情境、自主设计制作地图及随境自主人机交互。
中图分类号:
李志林, 徐柱, 慎利, 李精忠, 蓝天, 王继成, 赵婷婷, 艾廷华, 遆鹏, 刘万增, 陈军. 自主式情境化地图表达:大模型时代的智能化地图制图理论探讨[J]. 测绘学报, 2024, 53(11): 2043-2052.
Zhilin LI, Zhu XU, Li SHEN, Jingzhong LI, Tian LAN, Jicheng WANG, Tingting ZHAO, Tinghua AI, Peng TI, Wanzeng LIU, Jun CHEN. Autonomous situatedness map representation: a theoretical discussion on intelligent cartography in the era of large models[J]. Acta Geodaetica et Cartographica Sinica, 2024, 53(11): 2043-2052.
[1] | NYERGES T L, JANKOWSKI P. A knowledge base for map projection selection[J]. The American Cartographer, 1989, 16(1): 29-38. |
[2] | PFEFFERKORN C, BURR D, HARRISON D, et al. ACES: a cartographic expert system[C]//Proceedings of 1985 Auto Carto-7. [S.l.]: IEEE, 1985. |
[3] | 孙群. 专家系统以及它在地图制图领域中的应用[J]. 解放军测绘学院学报, 1992(1): 67-73. |
SUN Qun. Expert system and its application in cartography[J]. Journal of Geomatics Science and Technology, 1992(1): 67-73. | |
[4] | ROBINSON G, JACKSON M. Expert systems in map design[C]//Proceedings of 1985 AutoCarto-7. [S.l.]: IEEE, 1985. |
[5] | MÜLLER J C, WANG Zeshen. A knowledge based system for cartographic symbol design[J]. The Cartographic Journal, 1990, 27(1): 24-30. |
[6] | 华一新. 用专家系统技术确定地图要素的地图符号类型[J]. 解放军测绘学院学报, 1991(3): 43-47. |
HUA Yixin. Determine the map symbol type of map element with expert system technology[J]. Journal of Geomatics Science and Technology, 1991(3): 43-47. | |
[7] | 张文星. 制图综合专家系统MAPGEN中多种语言工具的结合[J]. 武汉测绘科技大学学报, 1988, 13(2): 86-94. |
ZHANG Wenxing. The integration of multiplelanguage tools in the expert system MAPGEN[J]. Geomatics and Information Science of Wuhan University, 1988, 13(2): 86-94. | |
[8] | NICKERSON B G, FREEMAN H. Development of a rule-based system for automatic map generalization[C]//Proceedings of the 2nd International Symposium on Spatial Data Handling. [S.l.]: IEEE, 1986. |
[9] | 王家耀, 吴战家, 武芳. 制图综合专家系统工具研究[J]. 解放军测绘学院学报, 1992(4): 66-72. |
WANG Jiayao, WU Zhanjia, WU Fang. The research on tools of the cartographic generalization expert system[J]. Journal of Geomatics Science and Technology, 1992(4): 66-72. | |
[10] | MOHAMMADZADEH A, VALADAN ZOEJ M J, TAVAKOLI A. Automatic main road extraction from high resolution satellite imageries by means of particle swarm optimization applied to a fuzzy-based mean calculation approach[J]. Journal of the Indian Society of Remote Sensing, 2009, 37(2): 173-184. |
[11] | SAMEEN M I, PRADHAN B. A two-stage optimization strategy for fuzzy object-based analysis using airborne LiDAR and high-resolution orthophotos for urban road extraction[J]. Journal of Sensors, 2017: 6431519. |
[12] | MABOUDI M, AMINI J, MALIHI S, et al. Integrating fuzzy object based image analysis and ant colony optimization for road extraction from remotely sensed images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 138: 151-163. |
[13] | LI Zhilin, OPENSHAW S. Algorithms for automated line generalization based on a natural principle of objective generalization[J]. International Journal of Geographical Information Systems, 1992, 6(5): 373-389. |
[14] | WARE J M, JONES C B. Conflict reduction in map generalization using iterative improvement[J]. GeoInformatica, 1998, 2(4): 383-407. |
[15] | WEIBEL R, KELLER S, REICHENBACHER T. Overcoming the knowledge acquisition bottleneck in map generalization: the role of interactive systems and computational intelligence[C]//Proceedings of 1995 International Conference on Spatial Information Theory. Berlin: Springer, 1995. |
[16] | HUANG Hesheng, GUO Qingsheng, SUN Yageng, et al. Reducing building conflicts in map generalization with an improved PSO algorithm[J]. ISPRS International Journal of Geo-Information, 2017, 6(5): 127-143. |
[17] | CHRISTENSEN J, MARKS J, SHIEBER S. An empirical study of algorithms for point-feature label placement[J]. ACM Transactions on Graphics, 1995, 14(3): 203-232. |
[18] | VERNER O V, WAINWRIGHT R L, SCHOENEFELD D A. Placing text labels on maps and diagrams using genetic algorithms with masking[J]. INFORMS Journal on Computing, 1997, 9(3): 266-275. |
[19] | SCHREYER M, RAIDL G R. Letting ants labeling point features[C]//Proceedings of 2002 Congress on Evolutionary Computation. Canberra: IEEE, 2002. |
[20] | KAKOULIS K G, TOLLIS I G. A unified approach to automatic label placement[J]. International Journal of Computational Geometry & Applications, 2003, 13(1): 23-59. |
[21] | LU Fuyu, DENG Jiqiu, LI Shiyu, et al. A hybrid of differential evolution and genetic algorithm for the multiple geographical feature label placement problem[J]. ISPRS International Journal of Geo-Information, 2019, 8(5): 237. |
[22] | ARMSTRONG M P, XIAO Ningchuan, BENNETT D A. Using genetic algorithms to create multicriteria class intervals for choropleth maps[J]. Annals of the Association of American Geographers, 2003, 93(3): 595-623. |
[23] | XIAO Ningchuan, ARMSTRONG M P. Supporting the comparison of choropleth maps using an evolutionary algorithm[J]. Cartography and Geographic Information Science, 2005, 32(4): 347-358. |
[24] | HSIAO Y T, CHUANG Chenglong, CHIEN C C. Ant colony optimization for best path planning[C]//Proceedings of 2004 IEEE International Symposium on Communications and Information Technology. Sapporo: IEEE, 2004. |
[25] | JENNY B, HEITZLER M, SINGH D, et al. Cartographic relief shading with neural networks[J]. IEEE Transactions on Visualization and Computer Graphics, 2021, 27(2): 1225-1235. |
[26] | MIRZA M, OSINDERO S. Conditional generative adversarial nets[EB/OL]. [2023-11-06]. https://arxiv.org/pdf/1411.1784. |
[27] | SIMONOVSKY M, KOMODAKIS N. GraphVAE: towards generation of small graphs using variational autoencoders[M]//KŮRKOVÁ V, MANOLOPOULOS Y, HAMMER B, et al. Lecture notes in computer science. Cham: Springer International Publishing, 2018: 412-422. |
[28] | LI J, CHEN Z, ZHAO X, et al. MapGAN: an intelligent generation model for network tile maps[J]. Sensors (Basel, Switzerland), 2020, 20(11): 3119-3137. |
[29] | HAN Ligong, MIN M R, STATHOPOULOS A, et al. Dual projection generative adversarial networks for conditional image generation[C]//Proceedings of 2021 IEEE/CVF International Conference on Computer Vision. Montreal: IEEE, 2021. |
[30] | CHEN Xu, CHEN Songqiang, XU Tian, et al. SMAPGAN: generative adversarial network-based semisupervised styled map tile generation method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(5): 4388-4406. |
[31] |
侯翘楚, 李必军, 张红娟, 等. 交叉口安全驾驶区域高精地图生成方法[J]. 测绘学报, 2023, 52(10): 1784-1796. DOI:.
doi: 10.11947/j.AGCS.2023.20220516 |
HOU Qiaochu, LI Bijun, ZHANG Hongjuan, et al. High-definition map generation method for safe driving areas at intersections[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(10): 1784-1796. DOI:.
doi: 10.11947/j.AGCS.2023.20220516 |
|
[32] | 江宝得, 许少芬, 王进, 等. 基于条件生成对抗网络的电子地图可视水印去除方法[J]. 地球信息科学学报, 2023, 25(2): 288-297. |
JIANG Baode, XU Shaofen, WANG Jin, et al. Electronic map visible watermark removal with conditional generative adversarial networks[J]. Journal of Geo-information Science, 2023, 25(2): 288-297. | |
[33] | LIU Jiping, XU Shenghua, ZHANG Fuhao, et al. A hybrid genetic-ant colony optimization algorithm for the optimal path selection[J]. Intelligent Automation & Soft Computing, 2017, 23(2): 235-242. |
[34] |
晏雄锋, 艾廷华, 杨敏, 等. 地图空间形状认知的自编码器深度学习方法[J]. 测绘学报, 2021, 50(6): 757-765. DOI:.
doi: 10.11947/j.AGCS.2021.20210046 |
YAN Xiongfeng, AI Tinghua, YANG Min, et al. Shape cognition in map space using deep auto-encoder learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(6): 757-765. DOI:.
doi: 10.11947/j.AGCS.2021.20210046 |
|
[35] | SESTER M, FENG Y, THIEMANN F. Building generalization using deep learning[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2018, XLII-4: 565-572. |
[36] | FENG Yu, THIEMANN F, SESTER M. Learning cartographic building generalization with deep convolutional neural networks[J]. ISPRS International Journal of Geo-Information, 2019, 8(6): 258. |
[37] | TOUYA G, ZHANG Xiang, LOKHAT I. Is deep learning the new agent for map generalization?[J]. International Journal of Cartography, 2019, 5(2/3): 142-157. |
[38] | 武芳, 杜佳威, 钱海忠, 等. 地图综合智能化研究的发展与思考[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1675-1687. |
WU Fang, DU Jiawei, QIAN Haizhong, et al. Overview of research progress and reflections in intelligent map generalization[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1675-1687. | |
[39] |
艾廷华. 深度学习赋能地图制图的若干思考[J]. 测绘学报, 2021, 50(9): 1170-1182. DOI:.
doi: 10.11947/j.AGCS.2021.20210091 |
AI Tinghua. Some thoughts on deep learning enabling cartography[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(9): 1170-1182. DOI:.
doi: 10.11947/j.AGCS.2021.20210091 |
|
[40] | BUBECK S, CHANDRASEKARAN V, ELDAN R, et al. Sparks of artificial general intelligence: early experiments with GPT-4[EB/OL]. [2023-03-22]. https://arxiv.org/pdf/2303.12712. |
[41] | 张钹. 发展第三代人工智能,推动产业化创新应用及产业发展[R]. 无锡: 昇腾人工智能产业高峰论坛, 2023. |
ZHANG Bo. Developing third-generation artificial intelligence, promoting industrial innovation and application, and promoting industrial development[R]. Wuxi: Ascend Artificial Intelligence Industry Summit Forum, 2023. | |
[42] | PICHAI S, HASSABIS D. Introducing Gemini: our largest and most capable AI model[R]. Wuxi: Ascend Artificial Intelligence Industry Summit Forum, 2023. |
[43] | MONTELLO D R. Cognitive map-design research in the twentieth century: theoretical and empirical approaches[J]. Cartography and Geographic Information Science, 2002, 29(3): 283-304. |
[44] | MORITA T. Theory and development of research in ubiquitous mapping[M]//GARTNER G, CARTWRIGHT W, PETERSON M P. Lecture notes in geoinformation and cartography. Berlin: Springer, 2007: 89-106. |
[45] | United Nations Economic Commission for Europe (UNECE). Making data meaningful part 2: a guide to presenting statistics[EB/OL]. [2023-11-06]. https://unece.org/fileadmin/DAM/stats/documents/writing/MDM_Part2_English.pdf. |
[46] | THRASH T, LANINI-MAGGI S M R, FABRIKANT S I, et al. The future of geographic information displays from GIScience, cartographic, and cognitive science perspectives[C]//Proceedings of 2019 Conference on Spatial Information Theory. Regensburg: IEEE, 2019. |
[47] |
王家耀. 时空大数据时代的地图学[J]. 测绘学报, 2017, 46(10): 1226-1237. DOI:.
doi: 10.11947/j.AGCS.2017.20170308 |
WANG Jiayao. Cartography in the age of spatio-temporal big data[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1226-1237. DOI:.
doi: 10.11947/j.AGCS.2017.20170308 |
|
[48] |
高俊. 图到用时方恨少,重绘河山待后生——《测绘学报》60年纪念与前瞻[J]. 测绘学报, 2017, 46(10): 1219-1225. DOI:.
doi: 10.11947/j.AGCS.2017.20170503 |
GAO Jun. The 60 anniversary and prospect of Acta Geodaetica et Cartographica Sinica[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1219-1225. DOI:.
doi: 10.11947/j.AGCS.2017.20170503 |
|
[49] |
郭仁忠, 应申. 论ICT时代的地图学复兴[J]. 测绘学报, 2017, 46(10): 1274-1283. DOI:.
doi: 10.11947/j.AGCS.2017.20170335 |
GUO Renzhong, YING Shen. The rejuvenation of cartography in ICT era[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1274-1283. DOI:.
doi: 10.11947/j.AGCS.2017.20170335 |
|
[50] |
郭仁忠, 陈业滨, 马丁, 等. 论ICT时代的泛地图表达[J]. 测绘学报, 2022, 51(7): 1108-1113. DOI:.
doi: 10.11947/j.AGCS.2022.20220140 |
GUO Renzhong, CHEN Yebin, MA Ding, et al. Pan-map representation in ICT era[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(7): 1108-1113. DOI:.
doi: 10.11947/j.AGCS.2022.20220140 |
|
[51] | 周成虎. 空间信息+的时代已经到来[R]. 北京: 2018空间信息软件技术大会, 2018. |
ZHOU Chenghu. The era of spatial information+has arrived[R]. Beijing: The 2018 Space Information Software Technology Conference, 2018. | |
[52] |
刘经南, 郭文飞, 郭迟, 等. 智能时代泛在测绘的再思考[J]. 测绘学报, 2020, 49(4): 403-414. DOI:.
doi: 10.11947/j.AGCS.2020.20190539 |
LIU Jingnan, GUO Wenfei, GUO Chi, et al. Rethinking ubiquitous mapping in the intelligent age[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(4): 403-414. DOI:.
doi: 10.11947/j.AGCS.2020.20190539 |
|
[53] |
李志林, 刘万增, 徐柱, 等. 时空数据地图表达的基本问题与研究进展[J]. 测绘学报, 2021, 50(8): 1033-1048. DOI:.
doi: 10.11947/j.AGCS.2021.20210072 |
LI Zhilin, LIU Wanzeng, XU Zhu, et al. Cartographic representation of spatio-temporal data: fundamental issues and research progress[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(8): 1033-1048. DOI:.
doi: 10.11947/j.AGCS.2021.20210072 |
|
[54] | KANG Yuhao, GAO Song, ROTH R E. Artificial intelligence studies in cartography: a review and synthesis of methods, applications, and ethics[J]. Cartography and Geographic Information Science, 2024, 51(4): 599-630. |
[55] | 张岸, 朱俊锴. 新一代人工智能驱动下地图学研究的机遇与挑战[J]. 地球信息科学学报, 2024, 26(1): 35-45. |
ZHANG An, ZHU Junkai. Opportunities and challenges of cartography research driven by the new generation of artificial intelligence[J]. Journal of Geo-information Science, 2024, 26(1): 35-45. | |
[56] | LI Zhenlong, NING Huan. Autonomous GIS: the next-generation AI-powered gis[J]. International Journal of Digital Earth, 2023, 16(2): 4668-4686. |
[57] | FENG Y, DING L, XIAO G. GeoQAMap-Geographic question answering with maps leveraging LLM and open knowledge base (short paper)[C]//Proceedings of the 12th International Conference on Geographic Information Science. Baltimore: The Johns Hopkins University Press, 2023. |
[58] | ZHANG Yifan, HE Zhengting, LI Jingxuan, et al. MapGPT: an autonomous framework for mapping by integrating large language model and cartographic tools[J]. Cartography and Geographic Information Science, 2024, 51(6): 717-743. |
[59] | JUHÁSZ L, MOONEY P, HOCHMAIR H H, et al. ChatGPT as a mapping assistant: a novel method to enrich maps with generative AI and content derived from street-level photographs[EB/OL]. [2023-06-05]. https://arxiv.org/pdf/2306.03204. |
[60] | XU Jinwen, TAO Ran. Map reading and analysis with GPT-4V (ision)[J]. ISPRS International Journal of Geo-Information, 2024, 13(4): 127. |
[61] | TAO Ran, XU Jinwen. Mapping with ChatGPT[J]. ISPRS International Journal of Geo-Information, 2023, 12(7): 284-296. |
[1] | 陈军, 艾廷华, 闫利, 刘万增, 李志林, 朱强, 高井祥, 谢洪, 武昊, 张俊. 智能化测绘的混合计算范式与方法研究[J]. 测绘学报, 2024, 53(6): 985-998. |
[2] | 魏东, 刘欣怡, 张永军. 多视影像三维线云重建技术及其智能化发展展望[J]. 测绘学报, 2024, 53(6): 1025-1036. |
[3] | 赵飞, 李兆正, 甘泉, 高祖瑜, 王湛初, 杜清运, 王振声, 沈洋, 潘威. 结合SAM大模型和数学形态学的历史地图水系信息提取方法[J]. 测绘学报, 2024, 53(4): 761-772. |
[4] | 孙群, 任福, 龙毅, 陈欣, 徐根才, 刘建军, 周炤. 中国地图制图学与地理信息工程进展报告(2019—2023)[J]. 测绘学报, 2024, 53(3): 399-412. |
[5] | 张永军, 李彦胜, 党博, 武康, 郭昕, 王剑, 陈景东, 杨铭. 多模态遥感基础大模型:研究现状与未来展望[J]. 测绘学报, 2024, 53(10): 1942-1954. |
[6] | 王密, 程昫, 潘俊, 皮英冬, 肖晶. 大模型赋能智能摄影测量:现状、挑战与前景[J]. 测绘学报, 2024, 53(10): 1955-1966. |
[7] | 燕琴, 顾海燕, 杨懿, 李海涛, 沈恒通, 刘世琦. 智能遥感大模型研究进展与发展方向[J]. 测绘学报, 2024, 53(10): 1967-1980. |
[8] | 罗飘, 许俊奎, 武芳, 吕亚坤, 庄清文. 一种生成式神经网络的道路简化方法[J]. 测绘学报, 2024, 53(10): 2007-2020. |
[9] | 任加新, 刘万增, 陈军, 张蓝, 陶远, 朱秀丽, 赵婷婷, 李然, 翟曦, 王海清, 周晓光, 侯东阳, 王勇. 知识引导的碎片化栅格地形图比例尺智能识别[J]. 测绘学报, 2024, 53(1): 146-157. |
[10] | 张继贤, 刘飞. 视觉SLAM环境感知技术现状与智能化测绘应用展望[J]. 测绘学报, 2023, 52(10): 1617-1630. |
[11] | 杨必胜, 陈驰, 董震. 面向智能化测绘的城市地物三维提取[J]. 测绘学报, 2022, 51(7): 1476-1484. |
[12] | 李清泉, 张德津, 汪驰升, 陈智鹏, 涂伟. 动态精密工程测量技术及应用[J]. 测绘学报, 2021, 50(9): 1147-1158. |
[13] | 艾廷华. 深度学习赋能地图制图的若干思考[J]. 测绘学报, 2021, 50(9): 1170-1182. |
[14] | 郝彤, 王晓峰, 冯甜甜, 陆平, 乔刚, 谢欢, 李荣兴. 地球系统多尺度关键区域与关键过程的智能化测绘[J]. 测绘学报, 2021, 50(8): 1084-1095. |
[15] | 赵飞. 指标驱动下以任务流为中心的在线交互制图模型[J]. 测绘学报, 2011, 40(5): 0-0. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||