测绘学报 ›› 2024, Vol. 53 ›› Issue (11): 2043-2052.doi: 10.11947/j. AGCS.2024.20240222.

• 综述 •    

自主式情境化地图表达:大模型时代的智能化地图制图理论探讨

李志林1,2,3(), 徐柱1, 慎利1, 李精忠4, 蓝天1(), 王继成5, 赵婷婷6, 艾廷华7, 遆鹏1, 刘万增6, 陈军3,6   

  1. 1.西南交通大学地球科学与工程学院,四川 成都 611756
    2.西南交通大学深圳研究院,广东 深圳 518000
    3.莫干山地信实验室,浙江 湖州 313200
    4.兰州交通大学测绘与地理信息学院,甘肃 兰州 730070
    5.四川师范大学西南土地资源评价与监测教育部重点实验室,四川 成都 610066
    6.国家基础地理信息中心,北京 100830
    7.武汉大学资源与环境科学学院,湖北 武汉 430079
  • 收稿日期:2024-05-22 发布日期:2024-12-13
  • 通讯作者: 蓝天 E-mail:dean.ge@home.swjtu.edu.cn;tianlan@swjtu.edu.cn
  • 作者简介:李志林(1960—),男,博士,教授,研究方向为空间数据多尺度建模与表达、空间信息理论与方法、遥感影像解译与信息提取。 E-mail:dean.ge@home.swjtu.edu.cn
  • 基金资助:
    国家自然科学基金(42394063)

Autonomous situatedness map representation: a theoretical discussion on intelligent cartography in the era of large models

Zhilin LI1,2,3(), Zhu XU1, Li SHEN1, Jingzhong LI4, Tian LAN1(), Jicheng WANG5, Tingting ZHAO6, Tinghua AI7, Peng TI1, Wanzeng LIU6, Jun CHEN3,6   

  1. 1.Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China
    2.Shenzhen Research Institute, Southwest Jiaotong University, Shenzhen 518000, China
    3.Moganshan Geospatial Information Laboratory, Huzhou 313200, China
    4.Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
    5.Key Laboratory of Ministry of Education on Land Resources Evaluation and Monitoring in Southwest China, Sichuan Normal University, Chengdu 610066, China
    6.National Geomatics Center of China, Beijing 100830, China
    7.School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
  • Received:2024-05-22 Published:2024-12-13
  • Contact: Tian LAN E-mail:dean.ge@home.swjtu.edu.cn;tianlan@swjtu.edu.cn
  • About author:LI Zhilin (1960—), male, PhD, professor, majors in multi-scale modeling and representation of spatial data, theories and methods of spatial information, as well as remote sensing image interpretation and information extraction. E-mail: dean.ge@home.swjtu.edu.cn
  • Supported by:
    The National Natural Science Foundation of China(42394063)

摘要:

通过智能化提升制图技术,让制图系统能全自动地完成地图设计与制作,一直是地图学界追求的目标,也一直是国际地图制图协会的前沿研究方向。从20世纪80年代开始,人工智能技术在地图学领域开始应用,逐步解决了部分工序的自动化问题,提高了地图制图的生产效率。然而,地图设计等关键环节的自动化水平仍然极低,无法满足信息时代的“定制化”“泛在化”制图需求。可喜的是,2023年以来,以GPT-4和Gemini等大语言模型(简称“大模型”)为代表的人工智能技术取得了突破,达到了“准通用人工智能”,表现出令人惊叹的语言理解力、推理能力和表达能力。基于此,本文探讨利用大模型来提升地图制图系统的智能水平,旨在建立新一代智能化制图理论与方法体系。首先,分析现有数字制图系统的瓶颈问题,指出建立新一代智能化制图技术的必要性;其次,分析大模型的性质与能力,论证建立新一代智能化制图技术的充分性;然后,进一步分析它们相结合的可能与方式,提出一个大模型时代的智能制图模式,并根据其根本性质与表征,将之称为情境化地图表达;最后,讨论情境化地图表达的关键技术问题,即自主觉知用图情境、自主设计制作地图及随境自主人机交互。

关键词: 智能化测绘, 地图制图, 情境化地图表达, 大模型

Abstract:

Making mapping system automatically conducting map design and production through intelligent techniques has always been the goal pursued by the cartographic community and the frontier research direction of the International Cartographic Association. Since the 1980s, artificial intelligence has been applied in cartography, gradually solving the automation problems of some processes and improving the production efficiency of map making. However, the level of automation in key steps such as map design is still extremely low, which cannot meet the “customized” and “ubiquitous” mapping demand in the information age. Fortunately, since 2023, artificial intelligence technology represented by large language models such as GPT-4 and Gemini has made breakthroughs and achieved “quasi-general artificial intelligence”, which shows strong language comprehension, reasoning and expression ability. This paper explores the use of large models to improve the intelligence level of map making systems, aiming to establish a new generation of intelligent mapping theory and method system. This paper first analyzes the bottleneck problems of the existing digital mapping system and points out the necessity of establishing a new generation of intelligent mapping technology; then it analyzes the nature and capabilities of large models and demonstrates the sufficiency of establishing such a new generation; then it further analyzes the possibility and methods of combining them, proposes an intelligent mapping framework in the era of large models (e.g. situatedness map representation); finally, it discusses the key technical issues of situatedness map representation: “autonomous consciousness of mapping context”, “autonomous design and production of maps” and “autonomous human-computer interaction in situatedness ”.

Key words: intelligent surveying and mapping, cartography, situatedness map representation, large model

中图分类号: